Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610090

RESUMO

The impact of action video games on reading performance has been already demonstrated in individuals with and without neurodevelopmental disorders. The combination of action video games and posterior parietal cortex neuromodulation by a transcranial random noise stimulation could enhance brain plasticity, improving attentional control and reading skills also in adults with developmental dyslexia. In a double blind randomized controlled trial, 20 young adult nonaction video game players with developmental dyslexia were trained for 15 h with action video games. Half of the participants were stimulated with bilateral transcranial random noise stimulation on the posterior parietal cortex during the action video game training, whereas the others were in the placebo (i.e. sham) condition. Word text reading, pseudowords decoding, and temporal attention (attentional blink), as well as electroencephalographic activity during the attentional blink, were measured before and after the training. The action video game + transcranial random noise stimulation group showed temporal attention, word text reading, and pseudoword decoding enhancements and P300 amplitude brain potential changes. The enhancement in temporal attention performance was related with the efficiency in pseudoword decoding improvement. Our results demonstrate that the combination of action video game training with parietal neuromodulation increases the efficiency of visual attention deployment, probably reshaping goal-directed and stimulus-driven fronto-parietal attentional networks interplay in young adults with neurodevelopmental conditions.


Assuntos
Intermitência na Atenção Visual , Dislexia , Jogos de Vídeo , Adulto Jovem , Humanos , Leitura , Lobo Parietal , Dislexia/terapia
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300180

RESUMO

Psychophysical observations indicate that the spatial profile of visuospatial attention includes a central enhancement around the attentional focus, encircled by a narrow zone of reduced excitability in the immediate surround. This inhibitory ring optimally amplifies relevant target information, likely stemming from top-down frontoparietal recurrent activity modulating early visual cortex activations. However, the mechanisms through which neural suppression gives rise to the surrounding attenuation and any potential hemispheric specialization remain unclear. We used transcranial magnetic stimulation to evaluate the role of two regions of the dorsal attention network in the center-surround profile: the frontal eye field and the intraparietal sulcus. Participants performed a psychophysical task that mapped the entire spatial attentional profile, while transcranial magnetic stimulation was delivered either to intraparietal sulcus or frontal eye field on the right (Experiment 1) and left (Experiment 2) hemisphere. Results showed that stimulation of right frontal eye field and right intraparietal sulcus significantly changed the center-surround profile, by widening the inhibitory ring around the attentional focus. The stimulation on the left frontal eye field, but not left intraparietal sulcus, induced a general decrease in performance but did not alter the center-surround profile. Results point to a pivotal role of the right dorsal attention network in orchestrating inhibitory spatial mechanisms required to limit interference by surrounding distractors.


Assuntos
Lateralidade Funcional , Estimulação Magnética Transcraniana , Humanos , Lateralidade Funcional/fisiologia , Lobo Parietal/fisiologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Imageamento por Ressonância Magnética , Mapeamento Encefálico
3.
Neuroimage ; 289: 120550, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38382861

RESUMO

Visual crowding is the difficulty in identifying an object when surrounded by neighbouring flankers, representing a bottleneck for object perception. Crowding arises not only from the activity of visual areas but also from parietal areas and fronto-parietal network activity. Parietal areas would provide the dorsal-to-ventral guidance for object identification and the fronto-parietal network would modulate the attentional resolution. Several studies highlighted the relevance of beta oscillations (15-25 Hz) in these areas for visual crowding and other connatural visual phenomena. In the present study, we investigated the differential contribution of beta oscillations in the parietal cortex and fronto-parietal network in the resolution of visual crowding. During a crowding task with letter stimuli, high-definition transcranial Alternating Current Stimulation (tACS) in the beta band (18 Hz) was delivered bilaterally on parietal sites, on the right fronto-parietal network, and in a sham regime. Resting-state EEG was recorded before and after stimulation to measure tACS-induced aftereffects. The influence of crowding was reduced only when tACS was delivered bilaterally on parietal sites. In this condition, beta power was reduced after the stimulation. Furthermore, the magnitude of tACS-induced aftereffects varied as a function of individual differences in beta oscillations. Results corroborate the link between parietal beta oscillations and visual crowding, providing fundamental insights on brain rhythms underlying the dorsal-to-ventral guidance in visual perception and suggesting that beta tACS can induce plastic changes in these areas. Remarkably, these findings open new possibilities for neuromodulatory interventions for disorders characterised by abnormal crowding, such as dyslexia.


Assuntos
Lobo Parietal , Estimulação Transcraniana por Corrente Contínua , Humanos , Percepção Visual/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos
4.
Psychophysiology ; 61(2): e14447, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37772611

RESUMO

Developmental dyslexia (DD) is a common neurodevelopmental disorder that affects reading ability despite normal intelligence and education. In search of core deficits, previous evidence has linked DD with impairments in temporal aspects of perceptual processing, which might underlie phonological deficits as well as inefficient graphemic parsing during reading. However, electrophysiological evidence for atypical temporal processing in DD is still scarce in the visual modality. Here, we investigated the efficiency of both temporal segregation and integration of visual information by means of event-related potentials (ERPs). We confirmed previous evidence of a selective segregation deficit in dyslexia for stimuli presented in rapid succession (<80 ms), despite unaffected integration performance. Importantly, we found a reduced N1 amplitude in DD, a component related to the allocation of attentional resources, which was independent of task demands (i.e., evident in both segregation and integration). In addition, the P3 amplitude, linked to working memory and processing load, was modulated by task demands in controls but not in individuals with DD. These results suggest that atypical attentional sampling in dyslexia might weaken the quality of information stored in visual working memory, leading to behavioral and electrophysiological signatures of atypical temporal segregation. These results are consistent with some existing theories of dyslexia, such as the magnocellular theory and the "Sluggish Attentional Shifting" framework, and represent novel evidence for neural correlates of decreased visual temporal resolution in DD.


Assuntos
Dislexia , Percepção do Tempo , Humanos , Leitura , Atenção/fisiologia , Memória de Curto Prazo
5.
Autism Res ; 17(1): 37-54, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009961

RESUMO

Autism spectrum disorder (ASD) is associated with a hyper-focused visual attentional style, impacting higher-order social and affective domains. The understanding of such peculiarity can benefit from the use of multivariate pattern analysis (MVPA) of high-resolution electroencephalography (EEG) data, which has proved to be a powerful technique to investigate the hidden neural dynamics orchestrating sensory and cognitive processes. Here, we recorded EEG in typically developing (TD) children and in children with ASD during a visuo-spatial attentional task where attention was exogenously captured by a small (zoom-in) or large (zoom-out) cue in the visual field before the appearance of a target at different eccentricities. MVPA was performed both in the cue-locked period, to reveal potential differences in the modulation of the attentional focus, and in the target-locked period, to reveal potential cascade effects on stimulus processing. Cue-locked MVPA revealed that while in the TD group the pattern of neural activity contained information about the cue mainly before the target appearance, the ASD group showed a temporally sustained and topographically diffuse significant decoding of the cue neural response even after the target onset, suggesting a delayed extinction of cue-related neural activity. Crucially, this delayed extinction positively correlated with behavioral measures of attentional hyperfocusing. Results of target-locked MVPA were coherent with a hyper-focused attentional profile, highlighting an earlier and stronger decoding of target neural responses in small cue trials in the ASD group. The present findings document a spatially and temporally overrepresented encoding of visual information in ASD, which can constitute one of the main reasons behind their peculiar cognitive style.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Atenção/fisiologia , Eletroencefalografia
6.
Front Psychol ; 14: 1296483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155693

RESUMO

Neural oscillations in alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are thought to reflect feedback/reentrant loops and large-scale cortical interactions. In the last decades a main effort has been made in linking perception with alpha-band oscillations, with converging evidence showing that alpha oscillations have a key role in the temporal and featural binding of visual input, configuring the alpha rhythm a key determinant of conscious visual experience. Less attention has been historically dedicated to link beta oscillations and visual processing. Nonetheless, increasing studies report that task conditions that require to segregate/integrate stimuli in space, to disentangle local/global shapes, to spatially reorganize visual inputs, and to achieve motion perception or form-motion integration, rely on the activity of beta oscillations, with a main hub in parietal areas. In the present review, we summarize the evidence linking oscillations within the beta band and visual perception. We propose that beta oscillations represent a neural code that supports the functionality of the magnocellular-dorsal (M-D) visual pathway, serving as a fast primary neural code to exert top-down influences on the slower parvocellular-ventral visual pathway activity. Such M-D-related beta activity is proposed to act mainly pre-consciously, providing the spatial coordinates of vision and guiding the conscious extraction of objects identity that are achieved with slower alpha rhythms in ventral areas. Finally, within this new theoretical framework, we discuss the potential role of M-D-related beta oscillations in visuo-spatial attention, oculo-motor behavior and reading (dis)abilities.

7.
Psychon Bull Rev ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783899

RESUMO

Visual and auditory stimuli are transmitted from the environment to sensory cortices with different timing, requiring the brain to encode when sensory inputs must be segregated or integrated into a single percept. The probability that different audiovisual (AV) stimuli are integrated into a single percept even when presented asynchronously is reflected in the construct of temporal binding window (TBW). There is a strong interest in testing whether it is possible to broaden or shrink TBW by using different neuromodulatory approaches that can speed up or slow down ongoing alpha oscillations, which have been repeatedly hypothesized to be an important determinant of the TBWs size. Here, we employed a web-based sensory entrainment protocol combined with a simultaneity judgment task using simple flash-beep stimuli. The aim was to test whether AV temporal acuity could be modulated trial by trial by synchronizing ongoing neural oscillations in the prestimulus period to a rhythmic sensory stream presented in the upper (∼12 Hz) or lower (∼8.5 Hz) alpha range. As a control, we implemented a nonrhythmic condition where only the first and the last entrainers were employed. Results show that upper alpha entrainment shrinks AV TBW and improves AV temporal acuity when compared with lower alpha and control conditions. Our findings represent a proof of concept of the efficacy of sensory entrainment to improve AV temporal acuity in a trial-by-trial manner, and they strengthen the idea that alpha oscillations may reflect the temporal unit of AV temporal binding.

8.
Biomedicines ; 11(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37371702

RESUMO

Developmental Dyslexia (DD) is a neurobiological condition affecting the ability to read fluently and/or accurately. Analyzing resting-state electroencephalographic (EEG) activity in DD may provide a deeper characterization of the underlying pathophysiology and possible biomarkers. So far, studies investigating resting-state activity in DD provided limited evidence and did not consider the aperiodic component of the power spectrum. In the present study, adults with (n = 26) and without DD (n = 31) underwent a reading skills assessment and resting-state EEG to investigate potential alterations in aperiodic activity, their impact on the periodic counterpart and reading performance. In parieto-occipital channels, DD participants showed a significantly different aperiodic activity as indexed by a flatter and lower power spectrum. These aperiodic measures were significantly related to text reading time, suggesting a link with individual differences in reading difficulties. In the beta band, the DD group showed significantly decreased aperiodic-adjusted power compared to typical readers, which was significantly correlated to word reading accuracy. Overall, here we provide evidence showing alterations of the endogenous aperiodic activity in DD participants consistently with the increased neural noise hypothesis. In addition, we confirm alterations of endogenous beta rhythms, which are discussed in terms of their potential link with magnocellular-dorsal stream deficit.

9.
J Cogn Neurosci ; : 1-18, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172123

RESUMO

Although visual input arrives continuously, sensory information is segmented into (quasi-)discrete events. Here, we investigated the neural correlates of spatiotemporal binding in humans with magnetoencephalography using 2 tasks where separate flashes were presented on each trial but were perceived, in a bistable way, as either a single or two separate events. The first task (two-flash fusion) involved judging one versus 2 flashes, whereas the second task (apparent motion: AM) involved judging coherent motion versus two stationary flashes. Results indicate two different functional networks underlying 2 unique aspects of temporal binding. In two-flash fusion trials, involving an integration window of ∼50 msec, evoked responses differed as a function of perceptual interpretation by ∼25 msec after stimuli offset. Multivariate decoding of subjective perception based on prestimulus oscillatory phase was significant for alpha-band activity in the right medial temporal (V5/MT) area, with the strength of prestimulus connectivity between early visual areas and V5/MT being predictive of performance. In contrast, the longer integration window (∼130 msec) for AM showed evoked field differences only ∼250 msec after stimuli offset. Phase decoding of the perceptual outcome in AM trials was significant for theta-band activity in the right intraparietal sulcus. Prestimulus theta-band connectivity between V5/MT and intraparietal sulcus best predicted AM perceptual outcome. For both tasks, phase effects found could not be accounted by concomitant variations in power. These results show a strong relationship between specific spatiotemporal binding windows and specific oscillations, linked to the information flow between different areas of the "where" and "when" visual pathways.

10.
Future Med Chem ; 15(8): 647-650, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37166073

RESUMO

Plain language summary From jewels and coinage to anticancer and antiviral agents, the peculiar 'soft' character as well as physicochemical, redox and ligand exchange properties of gold can be exploited to design novel bioactive complexes, which may open up new perspectives to the development of drugs for therapeutic and diagnostic applications.


From jewels and coinage to anticancer and antiviral agents, the peculiar 'soft' character as well as physicochemical, redox and ligand exchange properties of gold can be exploited to design novel bioactive complexes, which may open up new perspectives to the development of drugs for therapeutic and diagnostic applications.


Assuntos
Ouro , Joias , Antivirais/farmacologia , Antivirais/química
11.
Brain Sci ; 13(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36831754

RESUMO

Anomalies of attentional selection have been repeatedly described in individuals with schizophrenia spectrum disorders. However, a precise analysis of their ability to inhibit irrelevant visual information during attentional selection is not documented. Recent behavioral as well as neurophysiological and computational evidence showed that attentional search among different competing stimuli elicits an area of suppression in the immediate surrounding of the attentional focus. In the present study, the strength and spatial extension of this surround suppression were tested in individuals with schizophrenia and neurotypical controls. Participants were asked to report the orientation of a visual "pop-out" target, which appeared in different positions within a peripheral array of non-target stimuli. In half of the trials, after the target appeared, a probe circle circumscribed a non-target stimulus at various target-to-probe distances; in this case, participants were asked to report the probe orientation instead. Results suggest that, as compared to neurotypical controls, individuals with schizophrenia showed stronger and spatially more extended filtering of visual information in the areas surrounding their attentional focus. This increased filtering of visual information outside the focus of attention might potentially hamper their ability to integrate different elements into coherent percepts and influence higher order behavioral, affective, and cognitive domains.

12.
Cereb Cortex ; 33(3): 543-556, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35266994

RESUMO

Audio-visual (AV) integration plays a crucial role in supporting social functions and communication in autism spectrum disorder (ASD). However, behavioral findings remain mixed and, importantly, little is known about the underlying neurophysiological bases. Studies in neurotypical adults indicate that oscillatory brain activity in different frequencies subserves AV integration, pointing to a central role of (i) individual alpha frequency (IAF), which would determine the width of the cross-modal binding window; (ii) pre-/peri-stimulus theta oscillations, which would reflect the expectation of AV co-occurrence; (iii) post-stimulus oscillatory phase reset, which would temporally align the different unisensory signals. Here, we investigate the neural correlates of AV integration in children with ASD and typically developing (TD) peers, measuring electroencephalography during resting state and in an AV integration paradigm. As for neurotypical adults, AV integration dynamics in TD children could be predicted by the IAF measured at rest and by a modulation of anticipatory theta oscillations at single-trial level. Conversely, in ASD participants, AV integration/segregation was driven exclusively by the neural processing of the auditory stimulus and the consequent auditory-induced phase reset in visual regions, suggesting that a disproportionate elaboration of the auditory input could be the main factor characterizing atypical AV integration in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adulto , Criança , Humanos , Percepção Visual/fisiologia , Eletroencefalografia , Comunicação
13.
Sci Rep ; 12(1): 19952, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402850

RESUMO

Peripheral object discrimination is hindered by a central dynamic mask presented between 150 and 300 ms after stimulus onset. The mask is thought to interfere with task-relevant feedback coming from higher visual areas to the foveal cortex in V1. Fan et al. (2016) supported this hypothesis by showing that the effect of mask can be further delayed if the task requires mental manipulation of the peripheral target. The main purpose of this study was to better characterize the temporal dynamics of foveal feedback. Specifically, in two experiments we have shown that (1) the effect of foveal noise mask is sufficiently robust to be replicated in an online data collection (2) in addition to a change in sensitivity the mask affects also the criterion, which becomes more conservative; (3) the expected dipper function for sensitivity approximates a quartic with a global minimum at 94 ms, while the best fit for criterion is a quintic with a global maximum at 174 ms; (4) the power spectrum analysis of perceptual oscillations in sensitivity data shows a cyclic effect of mask at 3 and 12 Hz. Overall, our results show that foveal noise affects sensitivity in a cyclic manner, with a global dip emerging earlier than previously found. The noise also affects the response bias, even though with a different temporal profile. We, therefore, suggest that foveal noise acts on two distinct feedback mechanisms, a faster perceptual feedback followed by a slower cognitive feedback.


Assuntos
Fóvea Central , Córtex Visual , Fóvea Central/fisiologia , Córtex Visual/fisiologia , Córtex Cerebral , Retroalimentação
14.
Sci Rep ; 12(1): 2782, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177673

RESUMO

Natural events are often multisensory, requiring the brain to combine information from the same spatial location and timing, across different senses. The importance of temporal coincidence has led to the introduction of the temporal binding window (TBW) construct, defined as the time range within which multisensory inputs are highly likely to be perceptually bound into a single entity. Anomalies in TBWs have been linked to confused perceptual experiences and inaccurate filtering of sensory inputs coming from different environmental sources. Indeed, larger TBWs have been associated with disorders such as schizophrenia and autism and are also correlated to a higher level of subclinical traits of these conditions in the general population. Here, we tested the feasibility of using a web-based version of a classic audio-visual simultaneity judgment (SJ) task with simple flash-beep stimuli in order to measure multisensory temporal acuity and its relationship with schizotypal traits as measured in the general population. Results show that: (i) the response distribution obtained in the web-based SJ task was strongly similar to those reported by studies carried out in controlled laboratory settings, and (ii) lower multisensory temporal acuity was associated with higher schizotypal traits in the "cognitive-perceptual" domains. Our findings reveal the possibility of adequately using a web-based audio-visual SJ task outside a controlled laboratory setting, available to a more diverse and representative pool of participants. These results provide additional evidence for a close relationship between lower multisensory acuity and the expression of schizotypal traits in the general population.


Assuntos
Percepção Auditiva , Transtorno Autístico/fisiopatologia , Esquizofrenia/fisiopatologia , Percepção do Tempo , Percepção Visual , Adulto , Feminino , Humanos , Masculino
15.
Eur J Neurosci ; 55(11-12): 3040-3053, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33942394

RESUMO

Attention and visual working memory (VWM) are among the most theoretically detailed and empirically tested constructs in human cognition. Nevertheless, the nature of the interrelation between selective attention and VWM still presents a fundamental controversy: Do they rely on the same cognitive resources or not? The present study aims at disentangling this issue by capitalizing on recent evidence showing that attention is a rhythmic phenomenon, oscillating over short time windows. Using a dual-task approach, we combined a classic VWM task with a visual detection task in which we densely sampled detection performance during the time between the memory and the test array. Our results show that an increment in VWM load was related to reduced detection of near-threshold visual stimuli. Importantly, we observed an oscillatory pattern in detection at ~7.5 Hz in the low VWM load conditions, which decreased towards ~5 Hz in the high VWM load condition. These findings suggest that the frequency of this sampling rhythm changes according to the allocation of attentional resources to either the VWM or the detection task. This pattern of results is consistent with a central sampling attentional rhythm which allocates shared attentional resources both to the flow of external visual stimulation and to the internal maintenance of visual information.


Assuntos
Cognição , Memória de Curto Prazo , Humanos , Memória de Curto Prazo/fisiologia , Estimulação Luminosa , Percepção Visual/fisiologia
16.
Eur J Neurosci ; 55(11-12): 3438-3450, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33098112

RESUMO

Neural oscillations in the alpha band (8-12 Hz) have been proposed as a key mechanism for the temporal resolution of visual perception. Higher alpha frequencies have been related to improved segregation of visual events over time, whereas lower alpha frequencies have been related to improved temporal integration. Similarly, also the phase of ongoing alpha has been shown to correlate with temporal integration/segregation. To test a causal relationship between alpha oscillations and perception, we here employed multi-channel transcranial alternating current stimulation (mc-tACS) over the right parietal cortex, whereas participants performed a visual temporal integration/segregation task that used identical stimuli with different instructions. Before and after mc-tACS we recorded the resting-state electroencephalogram (EEG) to extract the individual alpha frequency (IAF) and delivered electrical stimulation at slightly slower and faster frequencies (IAF±2 Hz). We hypothesized that this would not only drive endogenous alpha rhythms, but also affect temporal integration and segregation in an opposite way. However, the mc-tACS protocol used here did not consistently increase or decrease the IAF after the stimulation and did not affect temporal integration/segregation accuracy as expected. Although we found some preliminary evidence for an influence of tACS phase on temporal integration accuracy, the ongoing phase of mc-tACS oscillations did not reliably modulate temporal integration/segregation accuracy in a sinusoidal way as would have been predicted by an effective entrainment of brain oscillations. These findings may guide future studies using different stimulation montages for investigating the role of cortical alpha oscillations for human vision.


Assuntos
Ritmo alfa , Estimulação Transcraniana por Corrente Contínua , Ritmo alfa/fisiologia , Eletroencefalografia , Humanos , Lobo Parietal , Estimulação Transcraniana por Corrente Contínua/métodos , Percepção Visual/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-34493191

RESUMO

BACKGROUND: The development of metallodrugs with potential applications in cancer treatment and diagnosis has been a hot topic since the approval and subsequent marketing of the anticancer drug cisplatin in 1978. Since then, thousands of metal-based derivatives have been reported and evaluated for their chemotherapeutic or tumor imaging properties, but only a very limited number gained clinical status. Nonetheless, research in the field has been increasing exponentially over the years, especially in a view to exploiting novel drug designing approaches and strategies aimed at improving pharmacological outcomes and, at the same time, reducing side-effects. OBJECTIVES: This review article reports on the patents filed during the last decade and strictly focusing on the development of metal-based anticancer and diagnostic agents. The goal is to identify the latest trends and designing strategies in the field, which would represent a valuable starting point to researchers interested in the development of metallodrugs. METHODS: The most relevant patents filed in the 2010-2020 timeframe have been retrieved from various databases using dedicated search engines (such as SciFinder, Google Patents, PatentPak, Espacenet, Global Dossier, PatentScope), sorted by type of metallodrug and screened to include those reporting a substantial amount of biological data. RESULTS: The majority of patents here reviewed are concerned with metallodrugs (mostly platinum- based) showing interesting pharmacological properties but no specific tumor-targeting features. Nonetheless, some promising trends in the development of novel drug delivery strategies and/or metallodrugs with potential applications in targeted chemotherapy are envisaged. CONCLUSION: In this review, the latest trends in the development of metallodrugs from recent patents are summarized and critically discussed. Such trends would be of interest not only to the scientific community but also to lay audiences aiming to broaden their knowledge of the field and industrial stakeholders potentially interested in the exploitation and commercialization of this class of pharmaceuticals.


Assuntos
Antineoplásicos , Neoplasias , Preparações Farmacêuticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cisplatino , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Patentes como Assunto
19.
Chemistry ; 27(71): 17928-17940, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34714566

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.


Assuntos
Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/efeitos dos fármacos
20.
Dalton Trans ; 50(25): 8963-8979, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34110336

RESUMO

To develop new metal-based glycoconjugates as potential anticancer agents, four organometallic gold(iii)-dithiocarbamato glycoconjugates of the type [AuIII(2-Bnpy)(SSC-Inp-GlcN)](PF6) (2-Bnpy: 2-benzylpyridine; Inp: isonipecotic moiety; GlcN: amino-glucose scaffold; Au3-Au6) and the corresponding model non-glycosylated counterparts [AuIII(2-Bnpy)(SSC-Inp-R)](PF6) (R: OEt (Au1), NH2 (Au2)) have been generated and characterized by means of several analytical techniques (elemental analysis, FT-IR, 1H-/13C-NMR, ESI-MS, UV-Vis, X-ray crystallography). Their stability under physiologically-relevant conditions (PBS solution) and n-octanol/PBS distribution coefficient (D7.4) have also been evaluated. Gold(iii) glycoconjugates showed an antiproliferative effect against ovarian carcinoma A2780 cells, with GI50 values in the low micromolar range. Remarkably, their cell growth inhibitory effect increases upon the addition of a glucose transporter 1 (GLUT1) inhibitor, thus ruling out the involvement of GLUT1 in their transport inside the cell. Additional mechanistic studies have been carried out in A2780 cells, supporting the hypothesis of a facilitated diffusion mechanism (possibly mediated by glucose transporters other than GLUT1), and revealing their capability to act as topoisomerase I and II inhibitors and to disrupt mitochondrial membrane integrity, leading to the generation of ROS, thus resulting in the promotion of oxidative stress and, eventually, cell death.


Assuntos
Neoplasias Ovarianas , Linhagem Celular Tumoral , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...